
Abstract

General Description The MAX1319/MAX1323/MAX1327 are single-channel, 14-bit, 526ksps analog-to-digital converters (ADCs) with ± 2 LSB INL and ± 1 LSB DNL with no missing codes. The MAX1323 has a $\pm 5 \mathrm{~V}$ input range with $\pm 16.5 \mathrm{~V}$ fault-tolerant inputs. The MAX1327 has $a \pm 10 \mathrm{~V}$ input range with $\pm 16.5 \mathrm{~V}$ fault-tolerant inputs and the MAX1319 has a 0 to +5 V input range with $\pm 6.0 \mathrm{~V}$ fault-tolerant inputs. Other features include a 10 MHz track/hold (T/H) input bandwidth, internal clock, internal (+2.5V) or external (+2.0V to +3.0 V) reference, and shutdown mode. A $16.6 \mathrm{MHz}, 14$-bit, parallel interface provides the conversion results and accepts digital configuration inputs. These devices operate from $\mathrm{a}+4.75 \mathrm{~V}$ to +5.25 V analog supply and a separate +2.7 V to +5.25 V digital supply, and consume less than 35 mA total supply current. For multichannel applications, refer to the MAX1316-MAX1318/MAX1320-MAX1322/MAX1324-MAX1326 data sheet. These devices come in a 48-pin TQFP package and operate over the extended $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range.

Applications
Vibration and Waveform Analysis
Data-Acquisition Systems
Industrial Process Control and Automation

Ordering Information/ Selector Guide

PART	PIN-PACKAGE	INPUT RANGE (V)	PKG CODE
MAX1319ECM	48 TQFP	0 to +5	C48-6
MAX1323ECM	48 TQFP	± 5	C48-6
MAX1327ECM	48 TQFP	± 10	C48-6

Note: All devices operate over the $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range.

- 14-Bit ADCs 526ksps
± 2 LSB INL, ± 1 LSB DNL, No Missing Codes 90dBc SFDR, -86dBc THD, 76.5dB SINAD, 77dB SNR at 100kHz Input
- Fast $1.6 \mu \mathrm{~s}$ Conversion Time
- Flexible Input Ranges

0 to +5V (MAX1319)
$\pm 5 \mathrm{~V}$ (MAX1323)
$\pm 10 \mathrm{~V}$ (MAX1327)

- No Calibration Needed
- 14-Bit High-Speed Parallel Interface
- Internal or External Clock
- +2.5V Internal Reference or +2.0V to +3.0V External Reference
- +5V Analog Supply, +3V to +5V Digital Supply 32mA Analog Supply Current (typ) 550 AA Digital Supply Current (typ) Shutdown and Power-Saving Modes
- 48-Pin TQFP Package (7mm x 7mm Footprint)

Pin Configuration

526ksps, Single-Channel, 14-Bit, Parallel-Interface ADCs

ABSOLUTE MAXIMUM RATINGS

REF+, COM, REF- to AGND......................-0.3V to (AV ${ }_{D D}+0.3 V$)
D0-D13 to DGND-0.3V to (DVDD $+0.3 V$)
Maximum Current into Any Pin Except AVDD, DVDD,
AGND, DGND .. $\pm 50 \mathrm{~mA}$
Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$)
TQFP (derate $22.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)................... 1818 mW
Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Junction Temperature .. $150^{\circ} \mathrm{C}$
Storage Temperature Range $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s) $+300^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{AV}_{\mathrm{DD}}=+5 \mathrm{~V}, \mathrm{DV}_{\mathrm{DD}}=+3 \mathrm{~V}, \mathrm{AGND}=\mathrm{DGND}=0 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=\mathrm{V}_{\text {REFMS }}=+2.5 \mathrm{~V}\right.$ (external reference), CREF $=\mathrm{C}_{\text {REFMS }}=0.1 \mu \mathrm{~F}, \mathrm{C}_{\text {REF }}=$ $C_{\text {REF- }}=0.1 \mu \mathrm{~F}, \mathrm{C}_{\text {REF+-to-REF- }}=2.2 \mu \mathrm{~F}\left\|0.1 \mu \mathrm{~F}, \mathrm{C}_{\text {COM }}=2.2 \mu \mathrm{~F}\right\| 0.1 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{MSV}}=2.2 \mu \mathrm{~F} \| 0.1 \mu \mathrm{~F}(\mathrm{MAX1319}$; unipolar device) , $\mathrm{MSV}=$ AGND (MAX1323/MAX1327; bipolar devices), fCLK $=10 \mathrm{MHz} 50 \%$ duty, $\mathrm{t}_{\text {ACQ }}=200 \mathrm{~ns}$, $\mathrm{t}_{\mathrm{QUIET}}=10 \mathrm{~ns}$, INTCLK/EXTCLK $=$ AGND (external clock), SHDN = DGND, $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
STATIC PERFORMANCE (Note 1)						
Resolution	N		14			Bits
Integral Nonlinearity	INL	(Note 2)		± 0.8	± 2	LSB
Differential Nonlinearity	DNL	No missing codes		± 0.5	± 1	LSB
Offset Error		Unipolar device			± 33	LSB
		Bipolar devices			± 33	
Offset Drift		Unipolar device		4		$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
		Bipolar devices		4		
Gain Error		(Note 3)		± 10	± 49	LSB
Gain Temperature Coefficient				3		ppm/ ${ }^{\circ} \mathrm{C}$
DYNAMIC PERFORMANCE (at fin $=100 \mathrm{kHz}, \mathbf{- 0 . 4 d B F S}$)						
Signal-to-Noise Ratio	SNR	Unipolar	74.5	76		dB
		Bipolar	75	76.5		
Signal-to-Noise and Distortion Ratio	SINAD	Unipolar	74.5	76.0		dB
		Bipolar	75	76.5		
Spurious Free Dynamic Range	SFDR		83	93		dBc
Total Harmonic Distortion	THD			-90	-83	dBc
ANALOG INPUTS (CHO-CH7)						
Input Voltage Range		MAX1319	0		+5	V
		MAX1323	-5		+5	
		MAX1327	-10		+10	

526ksps，Single－Channel， 14－Bit，ParalleI－Interface ADCs

ELECTRICAL CHARACTERISTICS（continued）

$\left(A V_{D D}=+5 \mathrm{~V}, \mathrm{DV}_{\mathrm{DD}}=+3 \mathrm{~V}, \mathrm{AGND}=\mathrm{DGND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=\mathrm{V}_{\text {REFMS }}=+2.5 \mathrm{~V}\right.$（external reference），CREF $=\mathrm{C}_{\text {REFMS }}=0.1 \mu \mathrm{~F}, \mathrm{C}_{\text {REF }}=$ CREF－＝ $0.1 \mu \mathrm{~F}, \mathrm{C}_{\text {REF＋－to－REF－}}=2.2 \mu \mathrm{~F} \| \mathrm{O} 0.1 \mu \mathrm{~F}, \mathrm{C}$ COM $=2.2 \mu \mathrm{~F}\|0.1 \mu \mathrm{~F}, \mathrm{CMSV}=2.2 \mu \mathrm{~F}\| 0.1 \mu \mathrm{~F}$（MAX1319；unipolar device），MSV＝ AGND（MAX1323／MAX1327；bipolar devices）， $\mathrm{f}_{\mathrm{CLK}}=10 \mathrm{MHz} 50 \%$ duty， $\mathrm{t}_{\mathrm{ACQ}}=200 \mathrm{~ns}$ ， $\mathrm{t}_{\mathrm{QUI}}$ IET $=10 \mathrm{~ns}$ ，INTCLK／EXTCLK $=$ AGND （external clock），SHDN＝DGND， $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ ，unless otherwise noted．Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ ．）

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Input Current		MAX1319	$\mathrm{V}_{\text {IN }}=+5 \mathrm{~V}$		0.54	0.72	mA
			VIN $=0 \mathrm{~V}$	－0．157	－0．12		
		MAX1323	V IN $=+5 \mathrm{~V}$		0.29	0.39	
			$\mathrm{V}_{\text {IN }}=-5 \mathrm{~V}$	－1．16	－0．87		
		MAX1327	V IN $=+10 \mathrm{~V}$		0.56	0.74	
			V IN $=-10 \mathrm{~V}$	－1．13	－0．85		
Input Resistance		MAX1319			7.58		k Ω
		MAX1323			8.66		
		MAX1327			14.26		
Input Capacitance					15		pF
TRACK／HOLD							
External Clock Throughput Rate					526		ksps
Internal Clock Throughput Rate					526		ksps
Small－Signal Bandwidth					10		MHz
Full－Power Bandwidth					10		MHz
Aperture Delay					16		ns
Aperture Jitter					50		pSRMS
INTERNAL REFERENCE							
REFMS Voltage	VREFMS			2.475	2.500	2.525	V
REF Voltage	VREF			2.475	2.500	2.525	V
REF Temperature Coefficient					30		ppm $/{ }^{\circ} \mathrm{C}$
EXTERNAL REFERENCE（REFMs and REF externally driven）							
Input Current				－250		＋250	$\mu \mathrm{A}$
REFMS Input Voltage Range	VREFMS	Unipolar device		2.0	2.5	3.0	V
REF Input Voltage Range	VREF			2.0	2.5	3.0	V
REF Input Capacitance					15		pF
REFMS Input Capacitance					15		pF

526ksps, Single-Channel, 14-Bit, Parallel-Interface ADCs

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{AV}_{\mathrm{DD}}=+5 \mathrm{~V}, \mathrm{DV}_{\mathrm{DD}}=+3 \mathrm{~V}, \mathrm{AGND}=\mathrm{DGND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=\mathrm{V}_{\text {REFMS }}=+2.5 \mathrm{~V}\right.$ (external reference), CREF $=\mathrm{C}_{\text {REFMS }}=0.1 \mu \mathrm{~F}, \mathrm{C}_{\text {REF }}=$ CREF- = $0.1 \mu \mathrm{~F}, \mathrm{C}_{\text {REF+-to-REF- }}=2.2 \mu \mathrm{~F} \| \mathrm{I} 0.1 \mu \mathrm{~F}, \mathrm{C}$ COM $=2.2 \mu \mathrm{~F}\|0.1 \mu \mathrm{~F}, \mathrm{CMSV}=2.2 \mu \mathrm{~F}\| 0.1 \mu \mathrm{~F}$ (MAX1319; unipolar device), MSV = AGND (MAX1323/MAX1327; bipolar devices), $\mathrm{f}_{\mathrm{CLK}}=10 \mathrm{MHz} 50 \%$ duty, $\mathrm{t}_{\mathrm{ACQ}}=200 \mathrm{~ns}$, $\mathrm{t}_{\mathrm{QUI}}$ IET $=10 \mathrm{~ns}$, INTCLK/EXTCLK $=$ AGND (external clock), SHDN = DGND, $T_{A}=T_{\text {MIN }}$ to $T_{M A X}$, unless otherwise noted. Typical values are at $T_{A}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
DIGITAL INPUTS (D0-D7, $\overline{\mathrm{RD}}, \overline{\mathrm{CS}}, \mathrm{CLK}, \mathrm{SHDN}, \mathrm{CONVST})$						
Input-Voltage High	V_{IH}		$\begin{gathered} 0.7 \times \\ D V_{D D} \end{gathered}$			V
Input-Voltage Low	VIL				$\begin{gathered} 0.3 \times \\ D V_{D D} \end{gathered}$	V
Input Hysteresis				15		mV
Input Capacitance	CIN			15		pF
Input Current	IIN	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ or $\mathrm{DV}_{\text {DD }}$			± 1	$\mu \mathrm{A}$

CLOCK-SELECT INPUT (INTCLK/EXTCLK)

Input-Voltage High			$0.7 \times$ $A V_{D D}$	V
Input-Voltage Low				$0.3 \times$ AVDD

DIGITAL OUTPUTS (D0-D13, $\overline{\text { EOC }}, \overline{\overline{E O L C}})$

Output-Voltage High	V_{OH}	ISOURCE $=0.8 \mathrm{~mA}$	DV 0.6 0.	V
Output-Voltage Low	VOL	$\mathrm{ISINK}=1.6 \mathrm{~mA}$	0.4	V
Tri-State Leakage Current		$\overline{\mathrm{RD}} \geq \mathrm{V}_{\mathrm{IH}}$ or $\overline{\mathrm{CS}} \geq \mathrm{V}_{\mathrm{IH}}$	0.06	1
Tri-State Output Capacitance		$\overline{\mathrm{RD}} \geq \mathrm{V}_{\mathrm{IH}}$ or $\overline{\mathrm{CS}} \geq \mathrm{V}_{\mathrm{IH}}$	$\mu \mathrm{A}$	

POWER SUPPLIES

526ksps, Single-Channel, 14-Bit, Parallel-Interface ADCs

TIMING CHARACTERISTICS (Figures 3, 4, 5, and 6) (Tables 1, 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Conversion Time	tconv	Internal clock		1.6	1.8	ns
		External clock (Figure 4)	16			Clock cycles
CONVST Pulse-Width Low (Acquisition Time)	tACQ	(Note 4)	0.16		100	$\mu \mathrm{S}$
$\overline{\text { CS Pulse Width }}$	t2		30			ns
$\overline{\mathrm{RD}}$ Pulse-Width Low	t3		30			ns
$\overline{\mathrm{CS}}$ to $\overline{\mathrm{RD}}$ Setup Time	t8		0			ns
$\overline{\mathrm{RD}}$ to $\overline{\mathrm{CS}}$ Hold Time	t9		0			ns
Data Access Time ($\overline{\mathrm{RD}}$ Low to Valid Data)	t_{10}				30	ns
Bus Relinquish Time ($\overline{\mathrm{RD}}$ High)	t_{11}				30	ns
$\overline{\text { EOC Pulse Width }}$	t_{12}	Internal clock	80			ns
		External clock (Figure 4)	1			Clock cycle
External CLK Period	t_{16}		90			ns
External CLK High Period	t_{17}	Logic sensitive to rising edges	20			ns
External CLK Low Period	t18	Logic sensitive to rising edges	20			ns
External Clock Frequency		(Note 6)	0.1		12.5	MHz
Internal Clock Frequency				10		MHz
CONVST High to CLK Edge	t_{19}	(Note 7)	20			ns
$\overline{\mathrm{EOC}}$ Low to $\overline{\mathrm{RD}}$	t20		0			ns

Note 1: For the MAX1319, $\mathrm{V}_{\mathbb{I}}=0$ to +5 V . For the $\mathrm{MAX1323}, \mathrm{~V}_{\mathbb{I}}=-5 \mathrm{~V}$ to +5 V . For the $\mathrm{MAX1327}, \mathrm{~V}_{\mathbb{I}}=-10 \mathrm{~V}$ to +10 V .
Note 2: INL is defined as the deviation of the analog value at any code from its theoretical value after offset and gain errors have been removed.
Note 3: Offset nulled.
Note 4: CONVST must remain low for at least the acquisition period.
Note 5: Defined as the change in positive full scale caused by a $\pm 5 \%$ variation in the nominal supply voltage.
Note 6: Minimum clock frequency is limited only by the internal T/H droop rate. Limit the time between the falling edge of CONVST to the falling edge of EOLC to a maximum of 0.25 ms .
Note 7: To avoid T/H droop degrading the sampled analog input signals, the first clock pulse should occur within $10 \mu \mathrm{~s}$ of the rising edge of CONVST and have a minimum clock frequency of 100 kHz .

526ksps, Single-Channel, 14-Bit, ParalleI-Interface ADCs

$\left(\mathrm{AV} D=+5 \mathrm{~V}, \mathrm{DV} \mathrm{DD}^{2}=+3 \mathrm{~V}, \mathrm{AGND}=\mathrm{DGND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=\mathrm{V}_{\mathrm{REF}} \mathrm{MS}=+2.5 \mathrm{~V}\right.$ (external reference), see the Typical Operating Circuits, $f_{C L K}=10 \mathrm{MHz} 50 \%$ duty, INTCLK/EXTCLK $=$ AGND (external clock), SHDN $=$ DGND, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

526ksps, Single-Channel, 14-Bit, Parallel-Interface ADCs

Typical Operating Characteristics (continued)
$\left(A V_{D D}=+5 \mathrm{~V}, \mathrm{DV}_{\mathrm{DD}}=+3 \mathrm{~V}, \mathrm{AGND}=\mathrm{DGND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=\mathrm{V}_{\mathrm{REFM}}=+2.5 \mathrm{~V}\right.$ (external reference), see the Typical Operating Circuits, $\mathrm{f}_{\mathrm{CLK}}=10 \mathrm{MHz} 50 \%$ duty, INTCLK/EXTCLK $=$ AGND (external clock), SHDN $=$ DGND, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

526ksps, Single-Channel, 14-Bit, Parallel-Interface ADCs

Typical Operating Characteristics (continued)
$\left(A V_{D D}=+5 \mathrm{~V}, \mathrm{DV}_{\mathrm{DD}}=+3 \mathrm{~V}, \mathrm{AGND}=\mathrm{DGND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=\mathrm{V}_{\text {REFMS }}=+2.5 \mathrm{~V}\right.$ (external reference), see the Typical Operating Circuits, $\mathrm{f}_{\mathrm{CLK}}=10 \mathrm{MHz} 50 \%$ duty, INTCLK/EXTCLK $=$ AGND (external clock), SHDN $=$ DGND, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

Pin Description

PIN	NAME	FUNCTION
1, 15, 17	$A V_{D D}$	Analog Supply Input. $A V_{D D}$ is the power input for the analog section of the converter. Apply +5 V to $A V_{D D}$. Bypass $A V_{D D}$ to $A G N D$ with a $0.1 \mu \mathrm{~F}$ capacitor at each $A V_{D D}$ input.
$\begin{gathered} 2,3,14 \\ 16,23 \end{gathered}$	AGND	Analog Ground. AGND is the power return for AVDD. Connect all AGNDs together.
4	AIN	Analog Input
5, 7-12	I.C.	Internally Connected. Connect I.C. to AGND.
6	MSV	Midscale Voltage Bypass. For the MAX1319, connect a $2.2 \mu \mathrm{~F}$ and a $0.1 \mu \mathrm{~F}$ capacitor from MSV to AGND. For the MAX1323/MAX1327, connect MSV directly to AGND.
13	$\frac{\text { INTCLK/ }}{\text { EXTCLK }}$	Clock-Mode Select Input. Use INTCLK/EXTCLK to select the internal or external conversion clock. Connect INTCLK/EXTCLK to AVDD to select the internal clock. Connect INTCLK/EXTCLK to AGND to use an external clock connected to CLK.
18	REFMS	Midscale Reference Bypass or Input. REFMS is the bypass point for an internally generated reference voltage. For the MAX1319, connect a 0.1μ F capacitor from REFMs to AGND. For the MAX1323/ MAX1327, connect REF MS $_{\text {directly to REF and bypass with a } 0.1 \mu F \text { capacitor from REF }}^{\text {MS }}$ to AGND.
19	REF	ADC Reference Bypass or Input. REF is the bypass point for an internally generated reference voltage. Bypass REF with a $0.01 \mu \mathrm{~F}$ capacitor to AGND. REF can be driven externally by a precision external voltage reference.
20	REF+	Positive Reference Bypass. REF+ is the bypass point for an internally generated reference voltage. Bypass REF + with a $0.1 \mu \mathrm{~F}$ capacitor to AGND. Also bypass REF+ to REF- with a $2.2 \mu \mathrm{~F}$ and a $0.1 \mu \mathrm{~F}$ capacitor.
21	COM	Reference Common Bypass. COM is the bypass point for an internally generated reference voltage. Bypass COM to AGND with a $2.2 \mu \mathrm{~F}$ and a $0.1 \mu \mathrm{~F}$ capacitor.

526ksps, Single-Channel, 14-Bit, Parallel-Interface ADCs

Pin Description (continued)

PIN	NAME	FUNCTION
22	REF-	Negative Reference Bypass. REF- is the bypass point for an internally generated reference voltage. Bypass REF- with a $0.1 \mu \mathrm{~F}$ capacitor to AGND. Also bypass REF- to REF+ with a $2.2 \mu \mathrm{~F}$ and a $0.1 \mu \mathrm{~F}$ capacitor.
24	D0	Digital Out Bit 0 of 14-Bit Parallel Data Bus. High impedance when $\overline{\mathrm{RD}}=1$ or $\overline{\mathrm{CS}}=1$.
25	D1	Digital Out Bit 1 of 14-Bit Parallel Data Bus. High impedance when $\overline{\mathrm{RD}}=1$ or $\overline{\mathrm{CS}}=1$.
26	D2	Digital Out Bit 2 of 14-Bit Parallel Data Bus. High impedance when $\overline{\mathrm{RD}}=1$ or $\overline{\mathrm{CS}}=1$.
27	D3	Digital Out Bit 3 of 14-Bit Parallel Data Bus. High impedance when $\overline{\mathrm{RD}}=1$ or $\overline{\mathrm{CS}}=1$.
28	D4	Digital Out Bit 4 of 14-Bit Parallel Data Bus. High impedance when $\overline{\mathrm{RD}}=1$ or $\overline{\mathrm{CS}}=1$.
29	D5	Digital Out Bit 5 of 14-Bit Parallel Data Bus. High impedance when $\overline{\mathrm{RD}}=1$ or $\overline{\mathrm{CS}}=1$.
30	D6	Digital Out Bit 6 of 14-Bit Parallel Data Bus. High impedance when $\overline{\mathrm{RD}}=1$ or $\overline{\mathrm{CS}}=1$.
31	D7	Digital Out Bit 7 of 14-Bit Parallel Data Bus. High impedance when $\overline{\mathrm{RD}}=1$ or $\overline{\mathrm{CS}}=1$.
32	D8	Digital Out Bit 8 of 14-Bit Parallel Data Bus. High impedance when $\overline{\mathrm{RD}}=1$ or $\overline{\mathrm{CS}}=1$.
33	D9	Digital Out Bit 9 of 14-Bit Parallel Data Bus. High impedance when $\overline{\mathrm{RD}}=1$ or $\overline{\mathrm{CS}}=1$.
34	D10	Digital Out Bit 10 of 14-Bit Parallel Data Bus. High impedance when $\overline{\mathrm{RD}}=1$ or $\overline{\mathrm{CS}}=1$.
35	D11	Digital Out Bit 11 of 14-Bit Parallel Data Bus. High impedance when $\overline{\mathrm{RD}}=1$ or $\overline{\mathrm{CS}}=1$.
36	D12	Digital Out Bit 12 of 14-Bit Parallel Data Bus. High impedance when $\overline{\mathrm{RD}}=1$ or $\overline{\mathrm{CS}}=1$.
37	D13	Digital Out Bit 13 of 14-Bit Parallel Data Bus. High impedance when $\overline{\mathrm{RD}}=1$ or $\overline{\mathrm{CS}}=1$.
38	DVDD	Digital Supply Input. Apply +2.7 V to +5.25 V to DV DD . Bypass DV ${ }_{\text {DD }}$ to DGND with a $0.1 \mu \mathrm{~F}$ capacitor.
39	DGND	Digital Supply GND. DGND is the power return for DVDD. Connect DGND to AGND at only one point (see the Layout, Grounding, and Bypassing section).
40	$\overline{\mathrm{EOC}}$	End-of-Conversion Output. $\overline{\mathrm{EOC}}$ goes low to indicate the end of a conversion. $\overline{\mathrm{EOC}}$ returns high after one clock period.
41	$\overline{\text { EOLC }}$	End-of-Last-Conversion Output. $\overline{\text { EOLC }}$ goes low to indicate the end of the last conversion. $\overline{\text { EOLC }}$ returns high when CONVST goes low for the next conversion sequence. For the MAX1319/MAX1323/ MAX1327, $\overline{\text { EOLC }}$ gives the same information as $\overline{\text { EOC }}$.
42	$\overline{\mathrm{RD}}$	Read Input. Pulling $\overline{\mathrm{RD}}$ low initiates a read command of the parallel data buses, D0-D13. D0-D13 are high impedance while either $\overline{\mathrm{RD}}$ or $\overline{\mathrm{CS}}$ is high.
43	I.C. 2	Internally Connected 2. Connect I.C. 2 to DVDD.
44	$\overline{\mathrm{CS}}$	Chip-Select Input. Pulling $\overline{\mathrm{CS}}$ low activates the digital interface. D0-D13 are high impedance while either $\overline{\mathrm{CS}}$ or $\overline{\mathrm{RD}}$ is high.
45	CONVST	Convert-Start Input. Driving CONVST high places the device in hold mode and initiates the conversion process. The analog inputs are sampled on the rising edge of CONVST. When CONVST is low the analog inputs are tracked.
46	CLK	External-Clock Input. CLK accepts an external clock signal up to 15 MHz . Connect CLK to DGND for internally clocked conversions. To select external clock mode, set INTCLK/EXTCLK $=0$.
47	SHDN	Shutdown Input. Set SHDN = 0 for normal operation. Set SHDN = 1 for shutdown mode.
48	ALLON	ALLON is not implemented. Connect ALLON to DGND.

526ksps, Single-Channel, 14-Bit, Parallel-Interface ADCs

Figure 1. Functional Diagram

Detailed Description

The MAX1319/MAX1323/MAX1327 are 14-bit, 526ksps, $1.6 \mu \mathrm{~s}$ conversion-time ADCs. These devices are available with 0 to $+5 \mathrm{~V}, \pm 5 \mathrm{~V}$, and $\pm 10 \mathrm{~V}$ input ranges. The 0 to +5 V device features $\pm 6 \mathrm{~V}$ fault-tolerant inputs (see the Typical Operating Circuits). The $\pm 5 \mathrm{~V}$ and $\pm 10 \mathrm{~V}$ devices feature $\pm 16.5 \mathrm{~V}$ fault-tolerant inputs (see the Typical Operating Circuits). Internal or external reference, and clock capability offer great flexibility and ease of use. A 16.6 MHz , 14-bit, parallel data bus outputs the conversion result. Figure 1 shows the functional diagram of these devices.

The time required for the T / H to acquire an input signal depends on the input source impedance. If the input signal's source impedance is high, the acquisition time lengthens and more time must be allowed between conversions. The acquisition time ($\mathrm{t} A C Q$) is the maximum time the device takes to acquire the signal. Use the following formula to calculate the acquisition time:

$$
t_{A C Q}=10(R S+R I N) \times 6 p F
$$

where RiN $=2.2 \mathrm{k} \Omega, \mathrm{RS}=$ the input signal's source impedance, and tACQ is never less than 180ns. A source impedance of less than 100Ω does not significantly affect the ADC's performance.

526ksps, Single-Channel, 14-Bit, Parallel-Interface ADCs

To improve the input signal bandwidth under AC conditions, drive the input with a wideband buffer $(>50 \mathrm{MHz})$ that can drive the ADC's input capacitance and settle quickly. For example, the MAX4265 can be used for +5 V unipolar devices, or the MAX4350 can be used for $\pm 5 \mathrm{~V}$ bipolar inputs.
The T / H aperture delay is typically 13 ns . Figure 2 shows a simplified equivalent input circuit, illustrating the ADC's sampling architecture.

Input Bandwidth

The input tracking circuitry has a 10 MHz small-signal bandwidth, making it possible to digitize high-speed transient events and measure periodic signals with bandwidths exceeding the ADC's sampling rate by using undersampling techniques. To avoid high frequency signals being aliased into the frequency band of interest, anti-alias filtering is recommended.

Input Range and Protection

These devices provide $\pm 10 \mathrm{~V}, \pm 5 \mathrm{~V}$ or 0 to +5 V analog input voltage ranges. Figure 2 shows the typical input circuit. Overvoltage protection circuitry at the analog input provides $\pm 16.5 \mathrm{~V}$ fault protection for the bipolar input devices and $\pm 6.0 \mathrm{~V}$ fault protection for the unipolar input device. This fault protection circuit limits the current going into or out of the device to less than 50 mA , providing an added layer of protection from momentary overvoltage or undervoltage conditions at the analog input.

Figure 2. Typical Input Circuit

Power-Saving Modes

Shutdown Mode
During shutdown, the analog and digital circuits in the device power down and the device draws less than $100 \mu \mathrm{~A}$ from $A V_{D D}$, and less than $100 \mu \mathrm{~A}$ from DVDD. Select shutdown mode using the SHDN input. Set SHDN high to enter shutdown mode. After coming out of shutdown, allow the 1 ms wake-up before making the first conversion. When using an external clock, apply at least 20 clock cycles with CONVST high before making the first conversion. When using internal clock mode, wait at least 2μ s before making the first conversion.

Clock Modes

These devices provide an internal clock of 10 MHz (typ). Alternatively, an external clock can be used.

Internal Clock

Internal clock mode frees the microprocessor from the burden of running the ADC conversion clock. For internal clock operation, connect INTCLK/EXTCLK to AVDD and connect CLK to DGND.

External Clock

For external clock operation, connect INTCLK/EXTCLK to AGND and connect an external clock source to CLK. Note that INTCLK/EXTCLK is referenced to the analog power supply, AVDD. The external clock frequency can be up to 15 MHz , with a duty cycle between 30% and 70%. Clock frequencies of 100 kHz and lower can be used, but the droop in the T/H circuits reduces linearity.

Selecting an Input Buffer
Most applications require an input buffer to achieve 14bit accuracy. Although slew rate and bandwidth are important, the most critical specification is settling time. The sampling requires a relatively brief sampling interval of 150ns. At the beginning of the acquisition, the internal sampling capacitor array connects to the amplifier output, causing some output disturbance. Ensure the amplifier is capable of settling to at least 14bit accuracy during this interval. Use a low-noise, lowdistortion, wideband amplifier (such as the MAX4330 or MAX4265), which settles quickly and is stable with the ADC's capacitive load (in parallel with any bypass capacitors on the analog inputs).

526ksps, Single-Channel, 14-Bit, Parallel-Interface ADCs

Applications Information

Digital Interface

The parallel digital interface outputs the 14-bit conversion result. The interface includes the following control signals: chip select ($\overline{\mathrm{CS}}$), read ($\overline{\mathrm{RD}}$), end of conversion ($\overline{\mathrm{EOC}}$), end of last conversion ($\overline{\mathrm{EOLC}}$), convert start (CONVST), shutdown (SHDN), all on (ALLON), internal clock select (INTCLK /EXTCLK), and external clock input (CLK). Figures 3 and 4, Table 1, and the Timing Characteristics table show the operation of the inter-
face. The parallel interface goes high impedance when $\overline{\mathrm{RD}}=1$ or $\overline{\mathrm{CS}}=1$.

Starting a Conversion

To start a conversion using internal clock mode, pull CONVST low for at least the acquisition time (tACQ). The T/H acquires the signal while CONVST is low, and conversion begins on the rising edge of CONVST. The end-of-conversion signal ($\overline{\mathrm{EOC}}$) or the end-of-last-conversion signal ($\overline{\mathrm{EOLC}})$ pulses low when the conversion result is available (Figure 3).

Figure 3. Reading a Conversion-Internal Clock

Table 1. Reference Bypass Capacitors

LOCATION	INPUT VOLTAGE RANGE			
	UNIPOLAR ($\mu \mathrm{F}$)	BIPOLAR ($\mu \mathrm{F}$)		
MSV Bypass Capacitor to AGND	2.2 \|	0.1	NA	
REFMS Bypass Capacitor to AGND	0.01	0.01		
REF Bypass Capacitor to AGND	0.01	0.01		
REF+ Bypass Capacitor to AGND	0.1	0.1		
REF+ to REF- Capacitor	2.2 \|	0.1	2.2 \|	0.1
REF- Bypass Capacitor to AGND	0.1	0.1		
COM Bypass Capacitor to AGND	2.2 \|	0.1	2.2 \|	0.1

$N A=$ Not applicable (connect MSV directly to AGND).

526ksps, Single-Channel, 14-Bit, Parallel-Interface ADCs

To start a conversion using external clock mode, pull CONVST low for at least the acquisition time ($\mathrm{t} A C Q$). The T/H acquires the signal while CONVST is low, and conversion begins on the rising edge of CONVST. Apply an external clock to the CLK pin. To avoid T/H droop degrading the sampled analog input signals, the first clock pulse should occur within 10μ s from the rising edge of CONVST, and have a minimum clock frequency of 100 kHz . The conversion result is available for read on the rising edge of the 17th clock cycle (Figure 4).
In both internal and external clock modes, CONVST must be held high until the last conversion result is read. For best operation, the rising edge of CONVST must be a clean, high-speed, low-jitter digital signal.
It is necessary to have a period of inactivity on the digital bus during signal aquisition. tQUIET is the period between the $\overline{\mathrm{RD}}$ rising edge and the falling edge of CONVST shown in Figure 4. Allow a minimum of 50 ns for tquIET.

Reading a Conversion Result
 Reading During a Conversion

Figures 3 and 4 show the interface signals for initiating a read operation during a conversion cycle. $\overline{\mathrm{CS}}$ can be
low at all times; it can be low during the $\overline{\mathrm{RD}}$ cycles, or it can be the same as $\overline{\mathrm{RD}}$.

After initiating a conversion by bringing CONVST high, wait for $\overline{\mathrm{EOC}}$ or $\overline{\mathrm{EOLC}}$ to go low (about 1.6μ s in internal clock mode or 17 clock cycles in external clock mode) before reading the first conversion result. Read the conversion result by bringing $\overline{\mathrm{RD}}$ low and latching the data to the parallel digital-output bus. Bring $\overline{\mathrm{RD}}$ high to release the digital bus.

Power-Up Reset
After applying power, allow the 1.0 ms wake-up time to elapse before initiating the first conversion. If using an external clock, apply 20 clock pulses to CLK with CONVST high before initiating the first conversion. If using an internal clock, hold CONVST high for at least 2.0 $\mu \mathrm{s}$ after the wake-up time is complete.

Reference
Internal Reference
The internal reference circuits provide for analog input voltages of 0 to +5 V unipolar (MAX1319), $\pm 5 \mathrm{~V}$ bipolar (MAX1323) or $\pm 10 \mathrm{~V}$ bipolar (MAX1327). Install external capacitors for reference stability, as indicated in Table 1, and as shown in the Typical Operating Circuits.

Figure 4. Reading a Conversion-External Clock

526ksps, Single-Channel, 14-Bit, Parallel-Interface ADCs

Figure 5. Power-Supply Grounding and Bypassing

External Reference

Connect a +2.0 V to +3.0 V external reference at REFMS and/or REF. When connecting an external reference, the input impedance is typically $5 k \Omega$. The external reference must be able to drive $200 \mu \mathrm{~A}$ of current and be less than 3Ω output impedance. For more information about using external references see the Transfer Functions section.

Layout, Grounding, and Bypassing

For best performance use PC boards. Board layout should ensure that digital and analog signal lines are separated from each other. Do not run analog and digital lines parallel to one another (especially clock lines), or do not run digital lines underneath the ADC package. Figure 5 shows the recommended system ground connections. A single-point analog ground (star ground point) should be established at AGND, separate from the logic ground. All other analog grounds and DGND should be connected to this ground. No other digital system ground should be connected to this single-point analog ground. The ground return to the power supply for this ground should be low impedance and as short as possible for noise-free operation. High-frequency noise in the VDD power supply may affect the highspeed comparator in the ADC. Bypass these supplies to the single-point analog ground with $0.1 \mu \mathrm{~F}$ and $2.2 \mu \mathrm{~F}$ bypass capacitors close to the device. If the +5 V
power supply is very noisy, a ferrite bead can be connected as a lowpass filter, as shown in Figure 5.

Transfer Functions

Bipolar $\pm 10 \mathrm{~V}$ Device
Table 2 and Figure 6 show the two's complement transfer function for the MAX1327 with a $\pm 10 \mathrm{~V}$ input range. The full-scale input range (FSR) is eight times the voltage at REF. The internal +2.500 V reference gives a +20 V FSR, while an external +2 V to +3 V reference allows an FSR of +16 V to +24 V , respectively. Calculate the LSB size using the following equation:

$$
1 \mathrm{LSB}=\frac{8 \times \mathrm{V}_{\text {REFADC }}}{2^{14}}
$$

This equals 1.2207 mV with $\mathrm{a}+2.5 \mathrm{~V}$ internal reference.
The input range is centered about $\mathrm{V}_{\mathrm{MSV}}$. Normally, MSV = AGND, and the input is symmetrical at about zero. For a custom midscale voltage, drive MSV with an external voltage source. Noise present on MSV directly couples into the ADC result. Use a precision, low-drift voltage reference with adequate bypassing to prevent MSV from degrading ADC performance. For maximum full-scale range, be careful not to violate the absolute maximum voltage ratings of the analog inputs when choosing MSV. Determine the input voltage as a function of VREF, $V_{\text {MSV }}$, and the output code in decimal using the following equation:

$$
\mathrm{V}_{\mathrm{CH}_{-}}=\mathrm{LSB} \times \mathrm{CODE}_{10}+\mathrm{V}_{\mathrm{MSV}}
$$

Bipolar $\pm 5 V$ Device
Table 3 and Figure 7 show the two's complement transfer function for the MAX1323 with a $\pm 5 \mathrm{~V}$ input range. The FSR is four times the voltage at REF. The internal +2.500 V reference gives $a+10 \mathrm{~V}$ FSR, while an external +2 V to +3 V reference allows an FSR of +8 V to +12 V , respectively. Calculate the LSB size using the following equation:

$$
1 \mathrm{LSB}=\frac{4 \times \mathrm{V}_{\mathrm{REFADC}}}{2^{14}}
$$

This equals 0.6104 mV when using the internal reference. The input range is centered about $\mathrm{V}_{\mathrm{MSV}}$. Normally, MSV = AGND, and the input is symmetrical at about zero. For a custom midscale voltage, drive MSV with an external voltage source. Noise present on MSV directly couples into the ADC result. Use a precision, low-drift voltage reference with adequate bypassing to prevent MSV from degrading ADC performance. For maximum full-scale range, be careful not to violate the absolute

526ksps，Single－Channel， 14－Bit，Parallel－Interface ADCs

Figure 6．$\pm 10 \mathrm{~V}$ Bipolar Transfer Function

Figure 7．$\pm 5 \mathrm{~V}$ Bipolar Transfer Function
maximum voltage ratings of the analog inputs when choosing MSV．Determine the input voltage as a func－ tion of $V_{\text {REF }}$ ， $\mathrm{V}_{\text {MSV }}$ ，and the output code in decimal using the following equation：

$$
V_{\mathrm{CH}_{-}}=\mathrm{LSB} \times \mathrm{CODE}_{10}+\mathrm{V}_{\mathrm{MSV}}
$$

Table 2．$\pm 10 \mathrm{~V}$ Bipolar Code Table

TWO＇S COMPLEMENT BINARY OUTPUT CODE	DECIMAL EQUIVALENT OUTPUT $\left(\mathrm{CODE}_{10}\right)$	INPUT VOLTAGE（V） （ $\mathrm{V}_{\text {REF }}=2.5 \mathrm{~V}$ ， $\mathrm{V}_{\mathrm{MSV}}=0 \mathrm{~V}$ ）
$\begin{gathered} 01111111111111 \rightarrow \\ 0 \times 1 F F F \end{gathered}$	8191	9.9988
$\begin{gathered} 01111111111110 \rightarrow \\ 0 \times 1 F F E \end{gathered}$	8190	9.9976
$\begin{gathered} 00000000000001 \rightarrow \\ 0 \times 0001 \end{gathered}$	1	0.0012
$\begin{gathered} 00000000000000 \rightarrow \\ 0 \times 0000 \end{gathered}$	0	0
$\begin{gathered} 11111111111111 \rightarrow \\ 0 \times 3 F F F \end{gathered}$	－1	－0．0012
$\begin{gathered} 10000000000001 \rightarrow \\ 0 \times 2001 \end{gathered}$	－8191	－9．9988
$\begin{gathered} 10000000000000 \rightarrow \\ 0 \times 2000 \end{gathered}$	－8192	－10．0000

Table 3．$\pm 5 \mathrm{~V}$ Bipolar Code Table

$\left.$| TWO＇S COMPLEMENT |
| :---: | :---: | :---: |
| BINARY OUTPUT CODE | | DECIMAL |
| :---: |
| EQUIVALENT |
| OUTPUT |
| $\left(\right.$ CODE $\left._{\mathbf{1 0}}\right)$ | | INPUT |
| :---: |
| VOLTAGE（V） |
| （VREF＝2．5V， |
| V VSV＝0V）$^{\prime}$ | \right\rvert\,

526ksps, Single-Channel, 14-Bit, Parallel-Interface ADCs

Table 4.0 to +5 V Unipolar Code Table

BINARY OUTPUT CODE	DECIMAL EQUIVALENT OUTPUT (CODE 10)	$\begin{gathered} \text { INPUT } \\ \text { VOLTAGE (V) } \\ \left(\mathrm{V}_{\text {REF }}=\mathrm{V}_{\text {REFMS }}\right. \\ =2.5 \mathrm{~V}) \end{gathered}$
$\begin{gathered} 11111111111111 \rightarrow \\ 0 \times 3 F F F \end{gathered}$	16383	4.9997
$\begin{gathered} 11111111111110 \rightarrow \\ 0 \times 3 F F E \end{gathered}$	16382	4.9994
$\begin{gathered} 10000000000001 \rightarrow \\ 0 \times 2001 \end{gathered}$	8193	2.5003
$\begin{gathered} 10000000000000 \rightarrow \\ 0 \times 2000 \end{gathered}$	8192	2.5000
$\begin{gathered} 01111111111111 \rightarrow \\ 0 \times 1 F F F \end{gathered}$	8191	2.4997
$\begin{gathered} 00000000000001 \rightarrow \\ 0 \times 0001 \end{gathered}$	1	0.0003
$\begin{gathered} 00000000000000 \rightarrow \\ 0 \times 0000 \end{gathered}$	0	0

Unipolar 0 to +5V Device

Table 4 and Figure 8 show the offset binary transfer function for the MAX1319 with a 0 to +5 V input range. The FSR is two times the voltage at REF. The internal +2.500 V reference gives a +5 V FSR, while an external +2 V to +3 V reference allows an FSR of +4 V to +6 V , respectively. Calculate the LSB size using the following equation:

$$
1 \mathrm{LSB}=\frac{2 \times \mathrm{V}_{\text {REFADC }}}{2^{14}}
$$

This equals 0.3052 mV when using the internal reference. The input range is centered about $\mathrm{V}_{\mathrm{MSV}}$, which is internally set to +2.500 V . For a custom midscale voltage, drive REF $_{\text {MS }}$ with an external voltage source and MSV will follow REFMs. Noise present on MSV or REFMS directly couples into the ADC result. Use a precision, low-drift voltage reference with adequate bypassing to prevent MSV from degrading ADC performance. For maximum full-scale range, be careful not to violate the absolute maximum voltage ratings of the analog inputs when choosing MSV. Determine the input voltage as a function of $\mathrm{V}_{\text {REF }}, \mathrm{V}_{\text {MSV }}$, and the output code in decimal using the following equation:

Figure 8. 0 to +5 V Unipolar Transfer Function

$$
V_{C H_{-}}=L S B \times \operatorname{CODE}_{10}+\left(V_{\mathrm{MSV}}-2.500 \mathrm{~V}\right)
$$

Definitions

Integral Nonlinearity (INL)

Integral nonlinearity is the deviation of the values on an actual transfer function from a straight line. For these devices this straight line is a line drawn between the endpoints of the transfer function, once offset and gain errors have been nullified.

Differential Nonlinearity (DNL)

Differential nonlinearity is the difference between an actual step width and the ideal value of 1 LSB. For these devices, the DNL of each digital output code is measured and the worst-case value is reported in the Electrical Characteristics table. A DNL error specification of less than ± 1 LSB guarantees no missing codes and a monotonic transfer function.

Unipolar Offset Error

For the unipolar MAX1319, the ideal midscale transition from 0x1FFF to 0×2000 occurs at MSV (see Figure 8). The unipolar offset error is the amount of deviation between the measured midscale transition point and the ideal midscale transition point.

526ksps, Single-Channel, 14-Bit, Parallel-Interface ADCs

Bipolar Offset Error

For the bipolar MAX1323/MAX1327, the ideal zero-point transition from $0 \times 3 F F F$ to 0×0000 occurs at MSV, which is usually connected to ground (see Figures 6 and 7). The bipolar offset error is the amount of deviation between the measured zero-point transition and the ideal zero-point transition.

Gain Error
The ideal full-scale transition from 0x1FFE to 0×1 FFF occurs at 1 LSB below full scale (see the Transfer Functions section). The gain error is the amount of deviation between the measured full-scale transition point and the ideal full-scale transition point, once offset error has been nullified.

Signal-to-Noise Ratio

For a waveform perfectly reconstructed from digital samples, signal-to-noise ratio (SNR) is the ratio of the full-scale analog input (RMS value) to the RMS quantization error (residual error). The ideal, theoretical minimum analog-to-digital noise is caused by quantization noise error only and results directly from the ADC's resolution (N bits):

$$
\text { SNR }=(6.02 \times N+1.76) \mathrm{dB}
$$

where $N=14$ bits.
In reality, there are other noise sources besides quantization noise; thermal noise, reference noise, clock jitter, etc. SNR is computed by taking the ratio of the RMS signal to the RMS noise, which includes all spectral components minus the fundamental, the first five harmonics, and the DC offset.

Signal-to-Noise Plus Distortion Signal-to-noise plus distortion (SINAD) is the ratio of the fundamental input frequency's RMS amplitude to the RMS equivalent of all the other ADC output signals.

$$
\operatorname{SINAD}(\mathrm{dB})=20 \times \log \left[\frac{\text { Signal }_{\mathrm{RMS}}}{(\text { Noise }+ \text { Distortion })_{\mathrm{RMS}}}\right]
$$

Effective Number of Bits Effective number of bits (ENOB) indicates the global accuracy of an ADC at a specific input frequency and sampling rate. An ideal ADC's error consists of quantization noise only. With an input range equal to the fullscale range of the ADC, calculate the ENOB as follows:

Total Harmonic Distortion
Total harmonic distortion (THD) is the ratio of the RMS sum of the first five harmonics of the input signal to the fundamental itself. This is expressed as:

$$
\mathrm{THD}=20 \times \log \left[\frac{\sqrt{V_{2}^{2}+V_{3}^{2}+V_{4}^{2}+V_{5}^{2}}}{V_{1}}\right]
$$

where V_{1} is the fundamental amplitude and V_{2} through V_{5} are the 2nd-through 5th-order harmonics.

Spurious-Free Dynamic Range

Spurious-free dynamic range (SFDR) is the ratio of the RMS amplitude of the fundamental (maximum signal component) to the RMS value of the next largest frequency component.

Aperature Delay
Aperture delay (t_{AD}) is the time delay from the sampling clock edge to the instant when an actual sample is taken.

Aperture Jitter
Aperture Jitter ($\mathrm{t} A \mathrm{~A}$) is the sample-to-sample variation in aperture delay.

Small-Signal Bandwidth
A small -20dBFS analog input signal is applied to an ADC in a manner that ensures that the signal's slew rate does not limit the ADC's performance. The input frequency is then swept up to the point where the amplitude of the digitized conversion result has decreased by -3 dB .

Full-Power Bandwidth
A large -0.5 dBFS analog input signal is applied to an ADC, and the input frequency is swept up to the point where the amplitude of the digitized conversion result has decreased by -3 dB . This point is defined as fullpower input bandwidth frequency.

Chip Information

TRANSISTOR COUNT: 80,000
PROCESS: $0.6 \mu \mathrm{~m}$ BiCMOS

$$
\mathrm{ENOB}=\frac{\mathrm{SINAD}-1.76}{6.02}
$$

526ksps, Single-Channel,

14-Bit, Parallel-Interface ADCs

526ksps, Single-Channel, 14-Bit, Parallel-Interface ADCs

526ksps, Single-Channel, 14-Bit, Parallel-Interface ADCs

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

